Multicoloured Hamilton Cycles

نویسندگان

  • Michael H. Albert
  • Alan M. Frieze
  • Bruce A. Reed
چکیده

Mi hael Albert, Alan Frieze and Bru e Reed Department of Mathemati s, Carnegie-Mellon University, Pittsburgh, U.S.A.y Submitted: April 25th,1995 A epted May 9th, 1995 Abstra t The edges of the omplete graph Kn are oloured so that no olour appears more than d ne times, where < 1=32 is a onstant. We show that if n is suÆ iently large then there is a Hamiltonian y le in whi h ea h edge is a di erent olour, thereby proving a 1986 onje ture of Hahn and Thomassen [9℄. We prove a similar result for the omplete digraph with < 1=64. We also show, by essentially the same te hnique, that if t 3, < (2t2(1 + t)) 1, no olour appears more than d ne times and tjn then the verti es an be partitioned into n=t t sets K1;K2; : : : ;Kn=t su h that the olours of the n(t 1)=2 edges ontained in the Ki's are distin t. The proof te hnique follows the lines of Erd} os and Spen er's [4℄ modi ation of the Lo al Lemma [1℄. Current address of Bru e Reed: Equipe Combinatoire, CNRS, Universit e Pierre et Marie Curie, 4 Pla e Jussieu, Paris, Fran e yAlan Frieze: partially supported by NSF grant CCR-9225008

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicoloured Hamilton cycles in random graphs; an anti-Ramsey threshold

Let the edges of a graph G be coloured so that no colour is used more than k times. We refer to this as a k-bounded colouring. We say that a subset of the edges of G is multicoloured if each edge is of a different colour. We say that the colouring is H-good, if a multicoloured Hamilton cycle exists i.e., one with a multicoloured edge-set. Let ARk = {G : every k-bounded colouring of G is H-good}...

متن کامل

Multicoloured Hamilton cycles and perfect matchings in pseudo-random graphs

Given 0 < p < 1, we prove that a pseudo-random graph G with edge density p and sufficiently large order has the following property: Consider any red/blue-colouring of the edges of G and let r denote the proportion of edges which have colour red. Then there is a Hamilton cycle C so that the proportion of red edges of C is close to r. The analogue also holds for perfect matchings instead of Hamil...

متن کامل

The 3-Colour Ramsey Number of a 3-Uniform Berge Cycle

The asymptotics of 2-colour Ramsey numbers of loose and tight cycles in 3-uniform hypergraphs were recently determined [16, 17]. We address the same problem for Berge cycles and for 3 colours. Our main result is that the 3-colour Ramsey number of a 3-uniform Berge cycle of length n is asymptotic to 5n 4 . The result is proved with the Regularity Lemma via the existence of a monochromatic connec...

متن کامل

On the Number of Hamilton Cycles in Bounded Degree Graphs

The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs – deriving thereby extremal bounds. We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276), improving on Eppstein’s previous bound. The resulting new upper bound of O(1.276) for the maximum number of Hamilton cycles in 3-regul...

متن کامل

Maximal sets of hamilton cycles in complete multipartite graphs

A set S of edge-disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G EðHÞ contains no hamilton cycles. In this context, the spectrum SðGÞ of a graph G is the set of integersm such that G contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1995